Orbital Elements (Part 2)#

Prepared by: Noah Leigh, Ilanthiraiyan Sivagnanamoorthy, and Angadh Nanjangud

In this lecture we aim to cover the following topics:

  1. Orbital Elements from Position and Velocity Vectors

  2. Rotation Matrix (Direction Cosines Matrix)

  3. ECI to Perifocal Frame

  4. Ephemeris

Orbital Elements from Position and Velocity Vectors#

  1. Orbital Parameters

  • Calculate the semi-major axis \(a\) from the Vis-Viva equation, given by Equation (89):

    \[\frac{1}{2}v^2 - \frac{\mu}{r}= -\frac{\mu}{2a}\]
  • Compute the eccentricity \(e\) (see Equation (79)):

    \[\mathbf{e} = \frac{\mathbf{v} \times \mathbf{h}}{\mu} - \frac{\mathbf{r}}{|\mathbf{r}|}\]
  • Compute the inclination \(i\) from:

    (148)#\[h_z=h \cos i\]
  • Compute the line of nodes from \({\mathbf{n}} = \hat{\mathbf k} \times {\mathbf h}\) and then the right ascension of the ascending node \(\Omega\) from:

    (149)#\[n_x = n \cos \Omega\]

    where \(n_x\) is the x-component of \(\mathbf{n}\) and \(n\) is the magnitude of \(\mathbf{n}\). The following logic determines the correct quadrant for \(\Omega\):

    • If \(n_y \geq 0\), then \(\Omega = \cos^{-1} \left( \frac{n_x}{n} \right)\). In this case, \(\Omega \in [0, 180^\circ]\)

    • If \(n_y < 0\), then \(\Omega = 360^\circ - \cos^{-1} \left( \frac{n_x}{n} \right)\). In this case, \(\Omega \in (180^\circ, 360^\circ)\)

  • Compute the argument of perigee \(\omega\) from:

    (150)#\[\cos \left(\omega\right) = \frac{\mathbf{n} \cdot \mathbf{e}}{|\mathbf{n}| |\mathbf{e}|}\]

    To determine the correct quadrant for \(\omega\), one examines the sign of \(e_z\), the z-component of the eccentricity vector \(\mathbf{e}\):

    • If \(e_z \geq 0\), then \(\omega = \cos^{-1}\left(\frac{\mathbf{n} \cdot \mathbf{e}}{ne}\right)\). In this case, \(\omega \in [0, 180^\circ]\).

    • If \(e_z < 0\), then \(\omega = 360^\circ - \cos^{-1}\left(\frac{\mathbf{n} \cdot \mathbf{e}}{ne}\right)\). In this case, \(\omega \in (180^\circ, 360^\circ)\).

  • Compute the true anomaly \(\theta\) from:

    (151)#\[\mathbf{r}\cdot\mathbf{e} = |\mathbf{r}||\mathbf{e}|\cos \left( \theta \right)\]

    To determine the correct quadrant for \(\theta\), one needs to calculate \(v_r = \mathbf{v}\cdot\hat{\mathbf{r}}\):

    • If \(v_r \geq 0, \theta = \cos^{-1}\left(\frac{\mathbf{r}\cdot\mathbf{e}}{|\mathbf{r}||\mathbf{e}|}\right)\). In this case, \(\theta \in [0, 180^\circ]\).

    • If \(v_r < 0, \theta = 360^\circ - \cos^{-1}\left(\frac{\mathbf{r} \cdot \mathbf{e}} {|\mathbf{e}||\mathbf{r}|}\right)\). In this case, \(\theta \in (180^\circ, 360^\circ)\).

Note

Orbital parameters can be singular in certain conditions!

Rotation Matrix (Direction Cosines Matrix)#

../../_images/reference_frames_L6.png

Fig. 19 Shows the two different reference frames, before transformation in black and after in green.#

Let’s define the unit vectors of two frames:

  • In the original frame: \(\left(\mathbf{ \hat{I}, \hat{J}, \hat{K} }\right)\)

  • In the transformed frame: \(\left( \mathbf{\hat{I}', \hat{J}', \hat{K}'} \right)\)

We want to express a vector r in two frames:

  • In the original frame: \(\mathbf{r} = (\mathbf{r_x, r_y, r_z})\)

  • In the transformed frame: \(\mathbf{r'} = \left(\mathbf{r'_x, r'_y, r'_z}\right)\)

Matrix Transformation:#

The transformation from the original frame to the new frame can be written as:

\[\mathbf{r'} = A\mathbf{r}\]
\[\begin{split} A = \begin{bmatrix} \mathbf{I'}\cdot\mathbf{I} & \mathbf{I'}\cdot\mathbf{J} & \mathbf{I'}\cdot\mathbf{K} \\ \mathbf{J'}\cdot\mathbf{I} & \mathbf{J'}\cdot\mathbf{J} & \mathbf{J'}\cdot\mathbf{K} \\ \mathbf{K'}\cdot\mathbf{I} & \mathbf{K'}\cdot\mathbf{J} & \mathbf{K'}\cdot\mathbf{K} \end{bmatrix} \end{split}\]

Each row of A contains the components of \(\mathbf{I',J',K'}\) in the \(\mathbf{I,J,K}\) reference frame. and vice versa for the columns.

Properties of the Rotation Matrix, \(A\):#

  1. The columns of \(A\) contain the components of the unit vectors \(\mathbf{I, J, K}\) in the transformed frame \(\mathbf{I', J', K'}\).

  2. The inverse transformation is given by:

\[ \mathbf{r} = A'\mathbf{r'} \]

Since \(A\) is an orthogonal matrix, the inverse of \(A\) is equal to its transpose:

\[ A' = A^T \]

This gives us the property:

\[ A^TA = I \]

Where \(I\) is the identity matrix.

The norm of each row of \(A = 1\) and the dot product between rows = 0 \(\Rightarrow\) 6 constraints \(\Rightarrow\) 9 elements - 6 constraints = 3 Degrees of Freedom.

Successive Rotations:#

If two successive rotations are performed, say \(A_1\) and \(A_2\), the net transformation matrix \(A\) is the product of the two:

(152)#\[A = A_2A_1\]

This allows us to deal with complex rotations as a series of simpler rotations.

Rotation About a Single Axis:#

For rotation about the \(\mathbf{I}\) \(\left(\mathbf{\hat{I}}\equiv\mathbf{\hat{I}'}\right)\):

\[\begin{split} A_x(\alpha) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\alpha) & -\sin(\alpha) \\ 0 & \sin(\alpha) & \cos(\alpha) \end{bmatrix} \end{split}\]
  • \(\mathbf{r'} = A_x(\alpha)\mathbf{r}\)

  • Inverse - \(\mathbf{r}=A_x(\alpha)^T\mathbf{r'}=A_x(-\alpha)\mathbf{r'}\)

  • We can also associate an angular velocity to this rotation \(\boldsymbol{\omega}=\dot{\alpha}\mathbf{\hat{I}}\).

../../_images/rotation_about_I_L6.png

Fig. 20 Shows a rotation about x-axis, before transformation in black and after in green.#

For rotation about the \(\mathbf{J}\) \(\left(\mathbf{\hat{J}}\equiv\mathbf{\hat{J}'}\right)\):

\[\begin{split} A_y(\alpha) = \begin{bmatrix} \cos(\alpha) & 0 & \sin(\alpha) \\ 0 & 1 & 0 \\ -\sin(\alpha) & 0 & \cos(\alpha) \end{bmatrix} \end{split}\]
  • \(\mathbf{r'} = A_y(\alpha)\mathbf{r}\)

  • Inverse - \(\mathbf{r}=A_y(\alpha)^T\mathbf{r'}=A_y(-\alpha)\mathbf{r'}\)

  • We can also associate an angular velocity to this rotation \(\boldsymbol{\omega}=\dot{\alpha}\mathbf{\hat{J}}\).

../../_images/rotation_about_J_L6.png

Fig. 21 Shows a rotation about y-axis, before transformation in black and after in green.#

For rotation about the \(\mathbf{K}\) \(\left(\mathbf{\hat{K}}\equiv\mathbf{\hat{K}'}\right)\):

\[\begin{split} A_z(\alpha) = \begin{bmatrix} \cos(\alpha) & -\sin(\alpha) & 0 \\ \sin(\alpha) & \cos(\alpha) & 0 \\ 0 & 0 & 1 \end{bmatrix} \end{split}\]
  • \(\mathbf{r'} = A_z(\alpha)\mathbf{r}\)

  • Inverse - \(\mathbf{r}=A_z(\alpha)^T\mathbf{r'}=A_z(-\alpha)\mathbf{r'}\)

  • We can also associate an angular velocity to this rotation \(\boldsymbol{\omega}=\dot{\alpha}\mathbf{\hat{K}}\).

../../_images/rotation_about_K_L6.png

Fig. 22 Shows a rotation about z-axis, before transformation in black and after in green.#

ECI to Perifocal Frame#

../../_images/ECI_L6.png

Fig. 23 Shows a satellite’s orbit described relative to Earth.#

Composition of Rotations:#

To rotate from the ECI (Earth-Centered Inertial) frame to the perifocal frame, we use three successive rotations:

  1. Rotation by \(\Omega\) about the z-axis:

    \[ A_z(\Omega) \]
  2. Rotation by \(i\) about the x-axis:

    \[ A_x(i) \]
  3. Rotation by \(\omega\) about the z-axis:

    \[ A_z(\omega) \]

The total transformation matrix, using successive rotations (152), is:

\[ A = A_z(\omega)A_x(i)A_z(\Omega) \]

with the respective direction matrices.

  • Transformation:

    • Passage from the ECI frame to the perifocal frame is given by the composition of three rotations:

      (153)#\[\mathbf{r}_{perifocal} = A_z(\omega) A_x(i) A_z(\Omega) \mathbf{r}_{ECI}\]
  • Inverse Transformation:

    • To transform from the perifocal frame back to ECI:

    \[ \mathbf{r}_{ECI}=\left[A_z(\omega)A_x(i)A_z(\Omega)\right]^T\mathbf{r}_{perifocal} =A^T_z(\Omega)A^T_x(i)A^T_z(\omega)\mathbf{r}_{perifocal} \]
    (154)#\[\mathbf{r}_{ECI} = A_z(-\Omega) A_x(-i) A_z(-\omega) \mathbf{r}_{perifocal}\]

Ephemeris#

Ephemeris are the position and velocity vectors as a function of time. They are typically provided as: \(t_0, a, e, i, \Omega, \omega, M_0\).

Note that, except for \(t\) and \(M_0\), all the other parameters are constant.

Problem: We wish to compute \(\mathbf{r}\) and \(\mathbf{v}\) at a general time, \(t\), in ECI frame.

Solution:

  1. First, we compute \(n = \sqrt\frac{\mu}{a^3}\).

  2. Then we calculate the current mean anomaly \(M = n(t - t_0) + M_0\).

  3. Solve Kepler’s equation, given by \(M = E - e\sin(E)\), for \(E\) (the eccentric anomaly).

  4. Find the true anomaly \(\theta\) from:

    (155)#\[\tan \left(\frac{\theta}{2}\right) = \sqrt{\frac{1+e}{1-e}} \tan\left( \frac{E}{2} \right)\]
  5. Find \(h\) from \(h = \sqrt{p \mu} = \sqrt{a(1-e^2)\mu}\).

  1. Compute the position vector in the perifocal frame:

    (156)#\[\mathbf{r}_{perifocal} = \frac{\frac{h^2}{\mu}}{1 + e \cos \theta } \bigr( \cos \theta \mathbf{\hat{p}} + \sin \theta \mathbf{\hat{q}} \bigr)\]
  1. Compute the velocity vector in the perifocal frame:

    (157)#\[\mathbf{v}_{perifocal} = \frac{\mu}{h} \bigr( -\sin \theta \mathbf{\hat{p}} + (e + \cos \theta) \mathbf{\hat{q}} \bigr)\]
  1. Transform the position and velocity vectors from the perifocal frame to the ECI frame using the inverse rotation matrices:

    (158)#\[\mathbf{r}_{ECI} = A_3(-\Omega) A_2(-i) A_1(-\omega) \mathbf{r}_{perifocal}\]
    (159)#\[\mathbf{v}_{ECI} = A_3(-\Omega) A_2(-i) A_1(-\omega) \mathbf{v}_{perifocal}\]